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Sticky spheres, entropy barriers, and nonequilibrium phase transitions
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A sticky spheres model to describe slow dynamics of a nonequilibrium system is proposed. The dynamical
slowing down is due to the presence of entropy barriers. An exact steady state analysis of the representative
mean field equations, in the case when the clusters are chosen with thea gaiow probability, demonstrates
a nonequilibrium phase transition from an exponential cluster size distribution to a power law.
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[. INTRODUCTION size. We present numerical evidence to show that this quan-
tity grows logarithmically with time at zero temperature.

When a macroscopic system in equilibrium at high tem-However, for nonzero temperatures, it saturates asymptoti-
perature is quenched rapidly to low temperature, either ofally to a stationary value. The model and the simulation
both of the following can happen. The system may get therdetails are discussed in Sec. Il. A general mean field formu-
ma”y arrested in a metastahlecal energy minimumstate lation of this model is presented in Sec. lll. An exact Steady
much faster than it could equilibrate at that temperature angtate analysis of this mean field model for the special case
hence its subsequent dynamical evolution becomes slow, fa¥hen the clusters are chosen with the sanpeiori probabil-
details, see Refl]. On the other hand, the system may still ity, described in Sec. IV, shows a phase transition from an
have thermal freedom to sample a large number of equal dgexponential to a power law cluster size distribution. A brief
almost equal energy states, upon a temperature quench, Sgmmary of the results is presented in Sec. V.
that its dynamical evolution again becomes slow, for ex-
ample, see Ref2]. In other words, the system would remain
trapped for a long time due to the presenceérgyand/or
entropybarriers. As a result, the relaxation of the system to  Consider a regular one dimensional lattice of dize-N,
its equilibrium could become anomalously slow. It is often consisting ofN sites unoccupied ani sites occupied by
history dependent, usually referred to as “aging,” and couldhard spheres of size equal to the lattice spacing. Therefore
become progressively slower with time. Glasg@$ ob-  the spheres on nearest neighbor sites touch each other. We
tained by the rapld quenCh|ng of I|qU|dS, prOVIde Slmple eX-assume periodic boundary conditions.
amples of aging systems which evolve slowly forever to- | et us define the “energy” of the systerk(t), at timet

wards their putative equilibrium states; granular systemgs the negative of the total number of nearest neighbor con-
whose density compaction is logarithmically slow in re-tgcts:

sponse to mechanical tappifg] and reaction-diffusion sys-

tems [5], provide other recent examples. Quite often one

finds that these systems develop a certain degree of spatial

disorder as well. Experimental evidence for such a scenario E()= ‘k; (k=D)c(v), @

has recently been reported in the literatifg An interesting

problem in this context is to see whether simfeal dy-

namical rules could be devised so as to capture the essentiherec(t) is the total number ok-mers(i.e., clusters con-

features of the nonequilibrium slow dynamics. In particular,sisting ofk spheres touching each other at tit)e We as-

it would be of interest to devise dynamical rules that couldSume that the number of spheres in the system is conserved:

lead to slow logarithmic growth of length scales often found= - 1k ¢ (t) =M. The lowest energy state of the system cor-

in several systems. To this end, we propose in this paper @sponds to having a singM-mer with energyEy=—(M

sticky sphere model to describe the slow dynamics of a non=1), and may henceforth be called the “ground state” of

equilibrium system. the system. On the other hand, the highest possible energy

The model consists of hard spheres placed randomly on eealizable for the system depends on the values of bbth

regular lattice. The energy of the system is defined in such andN.

way that nearest neighbor contacts between the spheres areFor givenM andN, we can always have a configuration of

energetically favored, hence the name “sticky” spheres. Anspheres with a maximum ofM —N) nearest neighbor con-

appropriate length scale for this system is the mean clustdacts, withM >N. This implies that the maximum energy the
system can have is given by, ., (M,N)=—(M—N).
However, when the system consists of only monomers,

*Email address: glass@apsara.barc.ernet.in which can be realized whevd <N, the energy is zero. Thus
TEmail address: kpn@igcar.ernet.in we have

1. MODEL
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FIG. 1. (a) Sticky sphere model: the dynamical moves available
for a chosen particle(b) its dual representation: the corresponding 0_

2 0 2 4 6 8 10 12
dynamical movesr=e#,
In(t)
_ | =(M=N) for M>N FIG. 2. Mean cluster size fdi= 16 384. The timé is measured
Eo=—(M=1); EmadM.N)= 0 for M<N. in units of 1N. Inverse of temperatur=, 10, 8, 6, 5, 4, and 2,

from top to bottom. Open circles represent simulation data obtained
(2 as 50 runs averages; continuous lines have been obtained from the
Godreehe and Luck mean field formalisfd] of the Ritort model.
From Eq.(1), it follows that the energy per particle(t) = Inset: T_emperature dependence 7_@1, the times beyond which
—1+[C(t)/M], where C(t)=2£":10k(t), is the average simulation more or less agrees with GL.
number of clusters at time SinceM/C(t) is just the mean
cluster sizeA(t), we havee(t)=—1+[1/A(t)], or equiva- Hopping to the farthest empty sité.the above move is
lently, A (t)=111+ €(t)]. Thus we have a sticky sphere sys- not accepted, then we move the active particle to the farthest
tem in which nearest neighbor contacts are energetically faempty site so that it sticks to the right edge of thaer. The
vored. energy of the systerfor equivalently, the number of nearest
We start from an initial (= 0) configuration of the sticky neighbor contacts in the systg¢oes not change. At the end
spheres placed on a one dimensional lattice segment in sud this move, we will have anl (- 1)-mer and ak—1)-mer,
a way that the system is in the highest possible energy stateith n empty sites in between them.
for given M and N. At any instant of timet, we choose a We have simulated the above process for the ddse
k-mer with a pre-assigned probabilitg, . Usually we take =N so that the dynamics will cover the full range of energy
px as k/M, implying thereby that we choose a sphere at(e=E/M) from 0 to —1. Thea priori probability, p,, for
random with thea priori probability, 1M. If we have chosen choosing &-mer is taken to be proportional foin the simu-
a monomer K=1), then it can hop either to its left or to its lation. We have presented in Fig. 2 the mean cluster size
right with equal probability. On the other hand, if we have A(t) as a function of Inj) obtained by averaging the data
chosen a&-mer with k>1, then we choose one of its edge over 50 independent runs for a system of dize 16 384 and
spheres(or equivalently, edge particlesat random with temperatures8=2, 4, 5, 6, 8, 10, ande. We observe that
equal probability. We call it the “active” particle. We note A(t) saturates asymptotically for temperaturds>0,
that there is at least one empty site available for the activevhereas it continues to grow logarithmically Bt 0.
particle to hop. Consider the situation where we have chosen We note that the logarithmically slow dynamics at zero
the left most sphere of thiemer (k>1) as the active par- temperature is purely due to entropy barriers because mono-
ticle. This particle can hop to the left. Let there belamer  mer creation is not possible at this temperature; the system
(I=1) located to the left of the active particle such that thereevolves only by the process of hopping to the farthest neigh-
aren empty sites in between them.nf= 1, we simply move bor empty site, which does not cost energy. In this sense, our
the particle into the available empty site because it does nahodel belongs to the same class of mean field models as that
cost energy. At the end of this move, we have Bh1)-mer  of Ritort [2]. In fact, we could anticipate this on heuristic
and a K—1)-mer separated by one empty sitentt 1, then  grounds.
we have two possibilities for the particle to hop, as illustrated The system will necessarily have to be in the configura-
in Fig. 1(a), and described below. tional state consisting of a monomer and aw—(1)-mer
Hopping to the nearest neighbor empty sifewe move  before it might be able to reach the ground state by choosing
the active particle to the nearest empty site, then we woulthe monomer with probability N. This is a rare event be-
be creating a monomer in the system. This process wouldause the larger cluster will always lose a particle with more
therefore cost one unit of energy. Hence, in order to take carprobability. Precisely the same situation prevail$ in the
of this energy cost, we move it to the nearest empty site wittRitort model as well. Hence we have also shown in Fig. 2 the
probability e #, where g is the inverse of the temperature. growth of A(t) obtained from Godrhe-Luck (GL) mean
At the end of this move, we will have a monomer located infield formalism[8] of the Ritort model as continuous lines.
between an-mer and a k—1)-mer. We observe that our simulation data agree more or less
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with those of the GL values for asymptotic times 7, , where

where we have schematically shown the temperature depen-

dence of g, in the inset of Fig. 2. Clearlysg,—> as - -

B—, and the simulation data fall on a line parellel to but W(t)Enzl Pnfa(t); A(t)Egl Pndnfr(t);
below the GL line. The sticky sphere system therefore ad-

mits of a mean field description that incorporates the GL

formalism at appropriate limits. )\B(t)s(l—e‘ﬁ)s(t)+e‘ﬁ; s(t)EE fo(t). (4
n=1

IIl. MEAN FIELD FORMULATION OF A ONE

DIMENSIONAL STICKY SPHERE SYSTEM This equation consists of two parts, one corresponding to

the single particle dissociation and the other to the cluster
The hopping of a single particle to its nearest/farthestmoving by a lattice unit as a whole. Each part has both the
neighbor empty site can be incorporated easily in a meagain and the loss terms.
field description by considering the dual representation ob- In the case of single particle dissociation, there are two
tained by replacing particles by holes and holes by particleggain terms. The first one corresponds to the event of a dis-
k-mers k=1) of the sticky sphere syste®[Fig. 1(a)] cor-  sociated particle sticking to &{ 1) cluster. The second one
respond to empty intervals of lengkhin its dual representa- corresponds to a particle dissociating fromkar(1) cluster,
tion S* [Fig. 1(b)], and vice versa. The energy of the systemtaking care to account for the energy cest® involved in
is still given by Eq.(1) except that,(t) now stands for the the event of its becoming a monomer. Similarly, the first of
number of successive empty sites of lengtim S*. the loss terms corresponds to a dissociated particle sticking
Consider &-mer,K,, in Shaving the empty intervals,  to ak cluster. The second one corresponds to a particle dis-
and |, to its left and right, respectivelyFig. 1(a)]. This  sociating from ak cluster, taking care to account for the
corresponds to the empty interudl between am-mer,K%,  energy cose # in the event of its becoming a monomer.
and ann-mer,K* , in S*. Let P be the right most particle of The probability of choosing & cluster,p,(k=1), has been
K. The hopping oP to its right nearest neighbor sit@, in  introduced appropriately. _ _ _
Scorresponds to the dissociation of the left most particle of [N the case of a cluster moving by one lattice unit as a
K* in S*. On the other hand, hopping & to the farthest whole, the gain term corresponds to mueluster (l=n=<k)
neighbor siteR in Scorresponds to the clustéf® movingas ~COMINg to stick to ak—n) cluster. The event of & cluster

a whole to the left by one lattice unit & . Thus the nearest/ moving out as vyeII as that of a cluster coming in_ to stick to
farthest neighbor hopping of a particle Sicorresponds to ak cluster constitutes the loss terms. The probability of mov-

(single particlé dissociation/movement of a cluster 8%. ing a cluster,pydn(n>1), has been introduced appropri-

In general, these processes may occur with probabilitiegteIY' _ . - .
g, andq,, respectively. For convenience, we may rescale the% Similarly, the master eguauons sansﬁgd by the fractions,
time so as to have these ever(teamely, single-particle o(t) andfy(t), can be written as follows:
dissociation/movement of a clusteoccur with the rates dfy (1)
unity andw=d3/q;, respectively. Spatial correlation in the oll = ug(t)fo(t) —[m(t) +py]f1(t) + N (1) pafa(t)
system may be ignored by treating tkeéners k=1) in S* t
as point masses occupying single lattice sites only. This _ _
leads to a simplified mean field description of the system in o{[p1di+AM]F1() —pidif1(DFe(D)},  (5)
terms of a distribution of masses dhlattice sites. We study dfo(t)
t.he. stochastic evplunon of the system in the therquynamlc dL = — pg(Dfo() +pafa(t) + wS(HA(D), (6)
limit, M, N—o with the mass densitypy=M/N, remaining t
finite.

Let f,(t) be the probability that a site will have masat ~ Where ug(t)=pi(1—e /)fy(t) + m(t)e” . In this model,
time t. By definition, S7_of,(t) =1 andZy_ okfi(t)=p. Let f[he parameters andd’s are all assumed to be temperature

independent.

The mean field equations, obtained by ignoring the spatial
extensions ok-mers k=1) in S*, provide the simplest rep-
resentation of the nearest/farthest neighbor single particle
hopping of a sticky sphere systegnYet, we cannot assume
df (1) a priori that they describe the asymptotic dynamical behav-
‘@—2:w(t)fk_l(t)_[w(t)+)\B(t)pk]fk(t) ior of S because the probabilitp, of choosing ak-mer

dt actually stands for the probability of choosing the empty

interval bounded on one side by tkamer of interest. It is
+)\B(t)pk+1fk+l(t)_w{[pkdk+ A()]F (D) also important to note that the presence or absence of the
aggregation terkaEEﬁzlpndnfnfk,n, in Eq. (3) corre-

px be thea priori probability for choosing & cluster and, if
chosen, letl, be thea priori probability for moving it by one
lattice unit. The evolution equation fdi(t) can now be
written as

K sponds to the specific monomer dynamics implementes] in
_ E prd (D) Fn(t) 3) viz., whether they jump to their farthest or to their nearest
amg m) neighbor sites, respectively. However, in the case when the
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clusters are chosen with equalpriori probability, empty
intervals are also chosen with the sameriori probability
(say, px=1); hence the mean field equations could provide
an adequate description 8f Moreover, it turns out that an
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p:[ﬂQﬁ(Z)] :%[7\/3_3(14_ (1-z)(1—12))].
z=1

Jz
(13

exact steady state analysis of these equations can be carriggy 3 givenw, it is clear that the value of;, being always

out in this case.

IV. STEADY STATE ANALYSIS

Here, we consider the cape=d;= 1, for which an exact
steady state analysis can be carried out. It is clear from Eqgs.

(3)—(6) that the generating function}ﬁ(z,t)EE[f:lz"fk(t),
satisfies the following equation:

IQ4(z,t b
l¥§12=Qﬁzr-au%%;Qﬁ+da, (7
where
S Mg Sz
a(Z)ZZS‘F;'F;—;,
)
b(z)=~ -2,
c(2)=\g(z—1) @—SZ + 22, ®)

less thare,, should not be less than unity fprto be real. As

p increases, the steady state value for the number of clusters,
s, increases, thereby reducing the valuezpf. Hence we
have the condition

7Pi(w)

ng; Pilw)=1+20w—2w

1
1+ —.

1)

(14

The equality sign defines the critical valgg at which the
rootz=1, and hence the critical density

0
TP 0 1
= =1/1+—1. (15
Pe T+2w(1—7)p, Pe w

The number of clusters will not increase beyogdfor p
>p.. It is of interest to consider the question of how this
inequality influences the cluster size distribution. To this
end, we consider the following contour integral:

_ Qp(2)

fi
Zk+l

dz (16)

The contour is chosen suitably so that only the portion of the

In order to study the steady state behavior of the system, Weontour above and below the branch zetz, contributes to
setdQp(z,t)/dt=0 and choose the root of the resulting qua- e integral. The number démers, f,, has the asymptotic

dratic equation so thaDz(z=0)=0 is ensured:

-

a(z)+§

2

b
2Q4(2)= a(z)+z —4c(z). (9

Simplifying the algebra, we can show that

2 s(z—1))?
a(z)+ | —4c(2)= (z2=21)(z2-25),
(10)
where the rootg, , are given by
21’2=(£+1—7 [1+20F2Vo’+w]; =€ P
11

Hence we have the generating function

2ws+s+)\ﬁ_ )‘B 3 Sz

Qp(2)= 20 20z 20
T aen.

exponential form, (#,) for p<p. whereas it has a power
law form, k=2 for p=p,.; as the density is increased be-
yondp., in addition to the power law decay, the distribution
develops a delta function peak corresponding to an “infi-
nite” aggregate.

However, at zero temperature,<1 for all nonzero val-
ues of w; therefore the above steady state analysis breaks
down. In fact, the condition expressed by Ef4) can be
rewritten as

S[1-Py(w)]
=1, TC_(l—S)Pl(w)' 17
For a givenw, the value ofr, increases as we increase the
particle density, until it becomes equal to the given tempera-
ture; beyond this, the steady state analysis breaks down. In
other words, the steady state phase transition from the “ex-
ponential” regime to the “aggregating” regime is observ-
able only in a limited range of temperature decided.bgnd
p. The infinite temperature version of a related model has
been discussed by Majumdar, Krishnamurthy, and Barma

[9].

V. SUMMARY

In this paper, we have presented a generic sticky sphere

The value ofsis fixed by the conservation of particle density model for describing the nonequilibrium behavior of a sys-

p:

tem fast quenched to a low temperature. The evolution of the
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system is based on kcal dynamical rule—the nearest/ distribution undergoes a phase transitionappropriate tem-
farthest neighbor hopping of a randomly chosen particle. Th@erature rangefrom an exponential form to a power law
mean cluster size, defining a length scale for the systenwith an additional delta function peak corresponding to an
asymptotically saturates to a stationary value at nonzero tenirfinite cluster.
peratures, whereas it grows logarithmically with time at zero

temperature. We have presented a general mean field formu-

lation of this model and solved it exactly for the case when

the clusters are chosen and moved with the sanpgiori One of the author§S.L.N.) thanks Y. S. Mayya and Am-
probability. We have shown that the steady state cluster sizigabh Joshi for fruitful discussions.
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