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Sticky spheres, entropy barriers, and nonequilibrium phase transitions
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A sticky spheres model to describe slow dynamics of a nonequilibrium system is proposed. The dynam
slowing down is due to the presence of entropy barriers. An exact steady state analysis of the represen
mean field equations, in the case when the clusters are chosen with the samea priori probability, demonstrates
a nonequilibrium phase transition from an exponential cluster size distribution to a power law.
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I. INTRODUCTION

When a macroscopic system in equilibrium at high te
perature is quenched rapidly to low temperature, either
both of the following can happen. The system may get th
mally arrested in a metastable~local energy minimum! state
much faster than it could equilibrate at that temperature
hence its subsequent dynamical evolution becomes slow
details, see Ref.@1#. On the other hand, the system may s
have thermal freedom to sample a large number of equa
almost equal energy states, upon a temperature quenc
that its dynamical evolution again becomes slow, for e
ample, see Ref.@2#. In other words, the system would rema
trapped for a long time due to the presence ofenergyand/or
entropybarriers. As a result, the relaxation of the system
its equilibrium could become anomalously slow. It is oft
history dependent, usually referred to as ‘‘aging,’’ and co
become progressively slower with time. Glasses@3#, ob-
tained by the rapid quenching of liquids, provide simple e
amples of aging systems which evolve slowly forever
wards their putative equilibrium states; granular syste
whose density compaction is logarithmically slow in r
sponse to mechanical tapping@4# and reaction-diffusion sys
tems @5#, provide other recent examples. Quite often o
finds that these systems develop a certain degree of sp
disorder as well. Experimental evidence for such a scen
has recently been reported in the literature@6#. An interesting
problem in this context is to see whether simplelocal dy-
namical rules could be devised so as to capture the esse
features of the nonequilibrium slow dynamics. In particul
it would be of interest to devise dynamical rules that co
lead to slow logarithmic growth of length scales often fou
in several systems. To this end, we propose in this pap
sticky sphere model to describe the slow dynamics of a n
equilibrium system.

The model consists of hard spheres placed randomly o
regular lattice. The energy of the system is defined in suc
way that nearest neighbor contacts between the sphere
energetically favored, hence the name ‘‘sticky’’ spheres.
appropriate length scale for this system is the mean clu
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size. We present numerical evidence to show that this qu
tity grows logarithmically with time at zero temperatur
However, for nonzero temperatures, it saturates asymp
cally to a stationary value. The model and the simulat
details are discussed in Sec. II. A general mean field form
lation of this model is presented in Sec. III. An exact stea
state analysis of this mean field model for the special c
when the clusters are chosen with the samea priori probabil-
ity, described in Sec. IV, shows a phase transition from
exponential to a power law cluster size distribution. A br
summary of the results is presented in Sec. V.

II. MODEL

Consider a regular one dimensional lattice of sizeM1N,
consisting ofN sites unoccupied andM sites occupied by
hard spheres of size equal to the lattice spacing. There
the spheres on nearest neighbor sites touch each other
assume periodic boundary conditions.

Let us define the ‘‘energy’’ of the system,E(t), at timet
as the negative of the total number of nearest neighbor c
tacts:

E~ t !52 (
k51

M

~k21!ck~ t !, ~1!

whereck(t) is the total number ofk-mers~i.e., clusters con-
sisting of k spheres touching each other at timet). We as-
sume that the number of spheres in the system is conser
(k51

M k ck(t)5M . The lowest energy state of the system co
responds to having a singleM-mer with energy,E052(M
21), and may henceforth be called the ‘‘ground state’’
the system. On the other hand, the highest possible en
realizable for the system depends on the values of bothM
andN.

For givenM andN, we can always have a configuration
spheres with a maximum of (M2N) nearest neighbor con
tacts, withM.N. This implies that the maximum energy th
system can have is given by,Emax(M ,N)52(M2N).
However, when the system consists of only monome
which can be realized whenM<N, the energy is zero. Thu
we have
©2001 The American Physical Society03-1
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E052~M21!; Emax~M ,N!5H 2~M2N! for M.N

0 for M<N.

~2!

From Eq.~1!, it follows that the energy per particle,e(t)5
211@C(t)/M #, where C(t)5(k51

M ck(t), is the average
number of clusters at timet. SinceM /C(t) is just the mean
cluster size,L(t), we havee(t)5211@1/L(t)#, or equiva-
lently, L(t)51/@11e(t)#. Thus we have a sticky sphere sy
tem in which nearest neighbor contacts are energetically
vored.

We start from an initial (t50) configuration of the sticky
spheres placed on a one dimensional lattice segment in
a way that the system is in the highest possible energy s
for given M and N. At any instant of timet, we choose a
k-mer with a pre-assigned probability,pk . Usually we take
pk as k/M , implying thereby that we choose a sphere
random with thea priori probability, 1/M . If we have chosen
a monomer (k51), then it can hop either to its left or to it
right with equal probability. On the other hand, if we ha
chosen ak-mer with k.1, then we choose one of its edg
spheres~or equivalently, edge particles! at random with
equal probability. We call it the ‘‘active’’ particle. We not
that there is at least one empty site available for the ac
particle to hop. Consider the situation where we have cho
the left most sphere of thek-mer (k.1) as the active par
ticle. This particle can hop to the left. Let there be anl-mer
( l>1) located to the left of the active particle such that th
aren empty sites in between them. Ifn51, we simply move
the particle into the available empty site because it does
cost energy. At the end of this move, we have an (l 11)-mer
and a (k21)-mer separated by one empty site. Ifn.1, then
we have two possibilities for the particle to hop, as illustra
in Fig. 1~a!, and described below.

Hopping to the nearest neighbor empty site.If we move
the active particle to the nearest empty site, then we wo
be creating a monomer in the system. This process wo
therefore cost one unit of energy. Hence, in order to take c
of this energy cost, we move it to the nearest empty site w
probability e2b, whereb is the inverse of the temperatur
At the end of this move, we will have a monomer located
between anl-mer and a (k21)-mer.

FIG. 1. ~a! Sticky sphere model: the dynamical moves availa
for a chosen particle;~b! its dual representation: the correspondi
dynamical moves.t[e2b.
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Hopping to the farthest empty site.If the above move is
not accepted, then we move the active particle to the farth
empty site so that it sticks to the right edge of thel-mer. The
energy of the system~or equivalently, the number of neare
neighbor contacts in the system! does not change. At the en
of this move, we will have an (l 11)-mer and a (k21)-mer,
with n empty sites in between them.

We have simulated the above process for the caseM
5N so that the dynamics will cover the full range of ener
(e5E/M ) from 0 to 21. Thea priori probability, pk , for
choosing ak-mer is taken to be proportional tok in the simu-
lation. We have presented in Fig. 2 the mean cluster s
L(t) as a function of ln(t) obtained by averaging the dat
over 50 independent runs for a system of sizeN516 384 and
temperaturesb52, 4, 5, 6, 8, 10, and̀ . We observe that
L(t) saturates asymptotically for temperaturesT.0,
whereas it continues to grow logarithmically atT50.

We note that the logarithmically slow dynamics at ze
temperature is purely due to entropy barriers because m
mer creation is not possible at this temperature; the sys
evolves only by the process of hopping to the farthest nei
bor empty site, which does not cost energy. In this sense,
model belongs to the same class of mean field models as
of Ritort @2#. In fact, we could anticipate this on heurist
grounds.

The system will necessarily have to be in the configu
tional state consisting of a monomer and an (N21)-mer
before it might be able to reach the ground state by choos
the monomer with probability 1/N. This is a rare event be
cause the larger cluster will always lose a particle with m
probability. Precisely the same situation prevails@7# in the
Ritort model as well. Hence we have also shown in Fig. 2
growth of L(t) obtained from Godre`che-Luck ~GL! mean
field formalism@8# of the Ritort model as continuous lines
We observe that our simulation data agree more or

FIG. 2. Mean cluster size forN516 384. The timet is measured
in units of 1/N. Inverse of temperatureb5`, 10, 8, 6, 5, 4, and 2,
from top to bottom. Open circles represent simulation data obtai
as 50 runs averages; continuous lines have been obtained from
Godrèche and Luck mean field formalism@4# of the Ritort model.
Inset: Temperature dependence oftGL , the times beyond which
simulation more or less agrees with GL.
3-2
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with those of the GL values for asymptotic timest.tGL ,
where we have schematically shown the temperature de
dence oftGL in the inset of Fig. 2. Clearly,tGL→` as
b→`, and the simulation data fall on a line parellel to b
below the GL line. The sticky sphere system therefore
mits of a mean field description that incorporates the
formalism at appropriate limits.

III. MEAN FIELD FORMULATION OF A ONE
DIMENSIONAL STICKY SPHERE SYSTEM

The hopping of a single particle to its nearest/farth
neighbor empty site can be incorporated easily in a m
field description by considering the dual representation
tained by replacing particles by holes and holes by partic
k-mers (k>1) of the sticky sphere systemS @Fig. 1~a!# cor-
respond to empty intervals of lengthk in its dual representa
tion S* @Fig. 1~b!#, and vice versa. The energy of the syste
is still given by Eq.~1! except thatck(t) now stands for the
number of successive empty sites of lengthk in S* .

Consider ak-mer,Kk , in Shaving the empty intervalsI m
and I n to its left and right, respectively@Fig. 1~a!#. This
corresponds to the empty intervalI k* between anm-mer,Km* ,
and ann-mer,Kn* , in S* . Let P be the right most particle o
Kk . The hopping ofP to its right nearest neighbor site,Q, in
S corresponds to the dissociation of the left most particle
Kn* in S* . On the other hand, hopping ofP to the farthest
neighbor site,R in Scorresponds to the clusterKn* moving as
a whole to the left by one lattice unit inS* . Thus the nearest
farthest neighbor hopping of a particle inS corresponds to
~single particle! dissociation/movement of a cluster inS* .

In general, these processes may occur with probabili
q1 andq2, respectively. For convenience, we may rescale
time so as to have these events~namely, single-particle
dissociation/movement of a cluster! occur with the rates
unity andv5q2 /q1, respectively. Spatial correlation in th
system may be ignored by treating thek-mers (k>1) in S*
as point masses occupying single lattice sites only. T
leads to a simplified mean field description of the system
terms of a distribution of masses onN lattice sites. We study
the stochastic evolution of the system in the thermodyna
limit, M, N→` with the mass density,r[M /N, remaining
finite.

Let f k(t) be the probability that a site will have massk at
time t. By definition,(k50

` f k(t)51 and(k50
` k fk(t)5r. Let

pk be thea priori probability for choosing ak cluster and, if
chosen, letdk be thea priori probability for moving it by one
lattice unit. The evolution equation forf k(t) can now be
written as

d fk>2~ t !

dt
5p~ t ! f k21~ t !2@p~ t !1lb~ t !pk# f k~ t !

1lb~ t !pk11f k11~ t !2vH @pkdk1D~ t !# f k~ t !

2 (
n51

k

pndnf n~ t ! f k2n~ t !J , ~3!
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where

p~ t ![ (
n51

`

pnf n~ t !; D~ t ![ (
n51

`

pndnf n~ t !;

lb~ t ![~12e2b!s~ t !1e2b; s~ t ![ (
n51

`

f n~ t !. ~4!

This equation consists of two parts, one corresponding
the single particle dissociation and the other to the clus
moving by a lattice unit as a whole. Each part has both
gain and the loss terms.

In the case of single particle dissociation, there are t
gain terms. The first one corresponds to the event of a
sociated particle sticking to a (k21) cluster. The second on
corresponds to a particle dissociating from a (k11) cluster,
taking care to account for the energy coste2b involved in
the event of its becoming a monomer. Similarly, the first
the loss terms corresponds to a dissociated particle stic
to a k cluster. The second one corresponds to a particle
sociating from ak cluster, taking care to account for th
energy coste2b in the event of its becoming a monome
The probability of choosing ak cluster,pk(k>1), has been
introduced appropriately.

In the case of a cluster moving by one lattice unit as
whole, the gain term corresponds to ann cluster (1<n<k)
coming to stick to a (k2n) cluster. The event of ak cluster
moving out as well as that of a cluster coming in to stick
a k cluster constitutes the loss terms. The probability of mo
ing a cluster,pndn(n>1), has been introduced appropr
ately.

Similarly, the master equations satisfied by the fractio
f 0(t) and f 1(t), can be written as follows:

d f1~ t !

dt
5mb~ t ! f 0~ t !2@p~ t !1p1# f 1~ t !1lb~ t !p2f 2~ t !

2v$@p1d11D~ t !# f 1~ t !2p1d1f 1~ t ! f 0~ t !%, ~5!

d f0~ t !

dt
52mb~ t ! f 0~ t !1p1f 1~ t !1vs~ t !D~ t !, ~6!

where mb(t)[p1(12e2b) f 1(t)1p(t)e2b. In this model,
the parametersv andd’s are all assumed to be temperatu
independent.

The mean field equations, obtained by ignoring the spa
extensions ofk-mers (k>1) in S* , provide the simplest rep
resentation of the nearest/farthest neighbor single par
hopping of a sticky sphere systemS. Yet, we cannot assum
a priori that they describe the asymptotic dynamical beh
ior of S, because the probabilitypk of choosing ak-mer
actually stands for the probability of choosing the emp
interval bounded on one side by thek-mer of interest. It is
also important to note that the presence or absence of
aggregation term,Fk[(n51

k pndnf nf k2n , in Eq. ~3! corre-
sponds to the specific monomer dynamics implemented iS,
viz., whether they jump to their farthest or to their near
neighbor sites, respectively. However, in the case when
3-3
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clusters are chosen with equala priori probability, empty
intervals are also chosen with the samea priori probability
~say, pk51!; hence the mean field equations could prov
an adequate description ofS. Moreover, it turns out that an
exact steady state analysis of these equations can be ca
out in this case.

IV. STEADY STATE ANALYSIS

Here, we consider the casepj5dj51, for which an exact
steady state analysis can be carried out. It is clear from E
~3!–~6! that the generating function,Qb(z,t)[(k51

` zkf k(t),
satisfies the following equation:

]Qb~z,t !

]t
5Qb

2~z!2Fa~z!1
b

zGQb1c~z!, ~7!

where

a~z!52s1
s

v
1

lb

v
2

sz

v
,

b~z!52
lb

v
,

c~z!5lb~z21!Fmb~12s!

v
2s2G1zs2. ~8!

In order to study the steady state behavior of the system
set]Qb(z,t)/]t50 and choose the root of the resulting qu
dratic equation so thatQb(z50)50 is ensured:

2Qb~z!5Fa~z!1
b

zG2AFa~z!1
b

zG2

24c~z!. ~9!

Simplifying the algebra, we can show that

Fa~z!1
b

zG2

24c~z!5H s~z21!

vz J 2

~z2z1!~z2z2!,

~10!

where the rootsz1,2 are given by

z1,25S t

s
112t D @112v72Av21v#; t[e2b.

~11!

Hence we have the generating function

Qb~z!5
2vs1s1lb

2v
2

lb

2vz
2

sz

2v

1
s~12z!

2vz
A~z2z1!~z2z2!. ~12!

The value ofs is fixed by the conservation of particle densi
r:
01110
ried

s.

e
-

r5H ]Qb~z!

]z J
z51

5
1

2v
@lb2s~11A~12z1!~12z2!!#.

~13!

For a givenv, it is clear that the value ofz1, being always
less thanz2, should not be less than unity forr to be real. As
r increases, the steady state value for the number of clus
s, increases, thereby reducing the values ofz1,2. Hence we
have the condition

s<
tP1~v!

12~12t!P1~v!
; P1~v![112v22vA11

1

v
.

~14!

The equality sign defines the critical valuesc at which the
root z51, and hence the critical density

rc5
trc

0

t12v~12t!rc
0

; rc
0[A11

1

v
21. ~15!

The number of clusters will not increase beyondsc for r
.rc . It is of interest to consider the question of how th
inequality influences the cluster size distribution. To th
end, we consider the following contour integral:

f k5 R Qb~z!

zk11
dz. ~16!

The contour is chosen suitably so that only the portion of
contour above and below the branch cutz5z1 contributes to
the integral. The number ofk-mers, f k , has the asymptotic
exponential form, (1/z1)k for r,rc whereas it has a powe
law form, k25/2 for r5rc ; as the density is increased b
yondrc , in addition to the power law decay, the distributio
develops a delta function peak corresponding to an ‘‘in
nite’’ aggregate.

However, at zero temperature,z1,1 for all nonzero val-
ues of v; therefore the above steady state analysis bre
down. In fact, the condition expressed by Eq.~14! can be
rewritten as

t>tc ; tc[
s@12P1~v!#

~12s!P1~v!
. ~17!

For a givenv, the value oftc increases as we increase th
particle density, until it becomes equal to the given tempe
ture; beyond this, the steady state analysis breaks down
other words, the steady state phase transition from the ‘
ponential’’ regime to the ‘‘aggregating’’ regime is obser
able only in a limited range of temperature decided byv and
r. The infinite temperature version of a related model h
been discussed by Majumdar, Krishnamurthy, and Bar
@9#.

V. SUMMARY

In this paper, we have presented a generic sticky sph
model for describing the nonequilibrium behavior of a sy
tem fast quenched to a low temperature. The evolution of
3-4
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system is based on alocal dynamical rule—the neares
farthest neighbor hopping of a randomly chosen particle. T
mean cluster size, defining a length scale for the syst
asymptotically saturates to a stationary value at nonzero t
peratures, whereas it grows logarithmically with time at ze
temperature. We have presented a general mean field fo
lation of this model and solved it exactly for the case wh
the clusters are chosen and moved with the samea priori
probability. We have shown that the steady state cluster
qu

s
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distribution undergoes a phase transition~in appropriate tem-
perature range! from an exponential form to a power law
with an additional delta function peak corresponding to
infinite cluster.
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